Game Chess Online Terbaik

Game Chess Online Terbaik

D Chess Meme Generator

Board representations

The data structure used to represent each chess position is key to the performance of move generation and position evaluation. Methods include pieces stored in an array ("mailbox" and "0x88"), piece positions stored in a list ("piece list"), collections of bit-sets for piece locations ("bitboards"), and huffman coded positions for compact long-term storage.

Computer chess programs consider chess moves as a game tree. In theory, they examine all moves, then all counter-moves to those moves, then all moves countering them, and so on, where each individual move by one player is called a "ply". This evaluation continues until a certain maximum search depth or the program determines that a final "leaf" position has been reached (e.g. checkmate).

One particular type of search algorithm used in computer chess are minimax search algorithms, where at each ply the "best" move by the player is selected; one player is trying to maximize the score, the other to minimize it. By this alternating process, one particular terminal node whose evaluation represents the searched value of the position will be arrived at. Its value is backed up to the root, and that evaluation becomes the valuation of the position on the board. This search process is called minimax.

A naive implementation of the minimax algorithm can only search to a small depth in a practical amount of time, so various methods have been devised to greatly speed the search for good moves. Alpha–beta pruning, a system of defining upper and lower bounds on possible search results and searching until the bounds coincided, is typically used to reduce the search space of the program.

In addition, various selective search heuristics, such as quiescence search, forward pruning, search extensions and search reductions, are also used as well. These heuristics are triggered based on certain conditions in an attempt to weed out obviously bad moves (history moves) or to investigate interesting nodes (e.g. check extensions, passed pawns on seventh rank, etc.). These selective search heuristics have to be used very carefully however. Over extend and the program wastes too much time looking at uninteresting positions. If too much is pruned or reduced, there is a risk cutting out interesting nodes.

Monte Carlo tree search (MCTS) is a heuristic search algorithm which expands the search tree based on random sampling of the search space. A version of Monte Carlo tree search commonly used in computer chess is PUCT, Predictor and Upper Confidence bounds applied to Trees.

DeepMind's AlphaZero and Leela Chess Zero uses MCTS instead of minimax. Such engines use batching on graphics processing units in order to calculate their evaluation functions and policy (move selection), and therefore require a parallel search algorithm as calculations on the GPU are inherently parallel. The minimax and alpha-beta pruning algorithms used in computer chess are inherently serial algorithms, so would not work well with batching on the GPU. On the other hand, MCTS is a good alternative, because the random sampling used in Monte Carlo tree search lends itself well to parallel computing, and is why nearly all engines which support calculations on the GPU use MCTS instead of alpha-beta.

Many other optimizations can be used to make chess-playing programs stronger. For example, transposition tables are used to record positions that have been previously evaluated, to save recalculation of them. Refutation tables record key moves that "refute" what appears to be a good move; these are typically tried first in variant positions (since a move that refutes one position is likely to refute another). The drawback is that transposition tables at deep ply depths can get quite large – tens to hundreds of millions of entries. IBM's Deep Blue transposition table in 1996, for example was 500 million entries. Transposition tables that are too small can result in spending more time searching for non-existent entries due to threshing than the time saved by entries found. Many chess engines use pondering, searching to deeper levels on the opponent's time, similar to human beings, to increase their playing strength.

Of course, faster hardware and additional memory can improve chess program playing strength. Hyperthreaded architectures can improve performance modestly if the program is running on a single core or a small number of cores. Most modern programs are designed to take advantage of multiple cores to do parallel search. Other programs are designed to run on a general purpose computer and allocate move generation, parallel search, or evaluation to dedicated processors or specialized co-processors.

The first paper on chess search was by Claude Shannon in 1950.[23] He predicted the two main possible search strategies which would be used, which he labeled "Type A" and "Type B",[24] before anyone had programmed a computer to play chess.

Type A programs would use a "brute force" approach, examining every possible position for a fixed number of moves using a pure naive minimax algorithm. Shannon believed this would be impractical for two reasons.

First, with approximately thirty moves possible in a typical real-life position, he expected that searching the approximately 109 positions involved in looking three moves ahead for both sides (six plies) would take about sixteen minutes, even in the "very optimistic" case that the chess computer evaluated a million positions every second. (It took about forty years to achieve this speed.) A later search algorithm called alpha–beta pruning, a system of defining upper and lower bounds on possible search results and searching until the bounds coincided, reduced the branching factor of the game tree logarithmically, but it still was not feasible for chess programs at the time to exploit the exponential explosion of the tree.

Second, it ignored the problem of quiescence, trying to only evaluate a position that is at the end of an exchange of pieces or other important sequence of moves ('lines'). He expected that adapting minimax to cope with this would greatly increase the number of positions needing to be looked at and slow the program down still further. He expected that adapting type A to cope with this would greatly increase the number of positions needing to be looked at and slow the program down still further.

This led naturally to what is referred to as "selective search" or "type B search", using chess knowledge (heuristics) to select a few presumably good moves from each position to search, and prune away the others without searching. Instead of wasting processing power examining bad or trivial moves, Shannon suggested that type B programs would use two improvements:

This would enable them to look further ahead ('deeper') at the most significant lines in a reasonable time. However, early attempts at selective search often resulted in the best move or moves being pruned away. As a result, little or no progress was made for the next 25 years dominated by this first iteration of the selective search paradigm. The best program produced in this early period was Mac Hack VI in 1967; it played at the about the same level as the average amateur (C class on the United States Chess Federation rating scale).

Meanwhile, hardware continued to improve, and in 1974, brute force searching was implemented for the first time in the Northwestern University Chess 4.0 program. In this approach, all alternative moves at a node are searched, and none are pruned away. They discovered that the time required to simply search all the moves was much less than the time required to apply knowledge-intensive heuristics to select just a few of them, and the benefit of not prematurely or inadvertently pruning away good moves resulted in substantially stronger performance.

In the 1980s and 1990s, progress was finally made in the selective search paradigm, with the development of quiescence search, null move pruning, and other modern selective search heuristics. These heuristics had far fewer mistakes than earlier heuristics did, and was found to be worth the extra time it saved because it could search deeper and widely adopted by many engines. While many modern programs do use alpha-beta search as a substrate for their search algorithm, these additional selective search heuristics used in modern programs means that the program no longer does a "brute force" search. Instead they heavily rely on these selective search heuristics to extend lines the program considers good and prune and reduce lines the program considers bad, to the point where most of the nodes on the search tree are pruned away, enabling modern programs to search very deep.

In 2006, Rémi Coulom created Monte Carlo tree search, another kind of type B selective search. In 2007, an adaption of Monte Carlo tree search called Upper Confidence bounds applied to Trees or UCT for short was created by Levente Kocsis and Csaba Szepesvári. In 2011, Chris Rosin developed a variation of UCT called Predictor + Upper Confidence bounds applied to Trees, or PUCT for short. PUCT was then used in AlphaZero in 2017, and later in Leela Chess Zero in 2018.

Program Loyalitas yang Menarik

DANAUHOKI88 sangat menghargai pemain setia dengan menawarkan program loyalitas yang memberikan penghargaan bagi pemain aktif. Pemain dapat mengumpulkan poin setiap kali bermain, dan poin ini bisa ditukarkan dengan berbagai hadiah menarik atau bonus tambahan yang memberikan nilai lebih kepada pemain setia.

Keamanan Data dan Transaksi yang Terjamin

Keamanan data dan transaksi finansial menjadi prioritas utama di DANAUHOKI88. Platform ini menggunakan teknologi enkripsi SSL terbaru untuk melindungi setiap data pribadi dan transaksi pemain. Dengan sistem keamanan yang ketat, pemain dapat bermain dengan tenang tanpa khawatir tentang ancaman keamanan atau kebocoran data.

Microcomputer revolution

Technological advances by orders of magnitude in processing power have made the brute force approach far more incisive than was the case in the early years. The result is that a very solid, tactical AI player aided by some limited positional knowledge built in by the evaluation function and pruning/extension rules began to match the best players in the world. It turned out to produce excellent results, at least in the field of chess, to let computers do what they do best (calculate) rather than coax them into imitating human thought processes and knowledge. In 1997 Deep Blue, a brute-force machine capable of examining 500 million nodes per second, defeated World Champion Garry Kasparov, marking the first time a computer has defeated a reigning world chess champion in standard time control.

In 2016, NPR asked experts to characterize the playing style of computer chess engines. Murray Campbell of IBM stated that "Computers don't have any sense of aesthetics... They play what they think is the objectively best move in any position, even if it looks absurd, and they can play any move no matter how ugly it is." Grandmasters Andrew Soltis and Susan Polgar stated that computers are more likely to retreat than humans are.[22]

Cara Mudah Mendaftar di DANAUHOKI88

Mendaftar di DANAUHOKI88 sangat mudah dan hanya memerlukan beberapa langkah sederhana. Berikut adalah panduan untuk mendaftar dan mulai menikmati permainan di DANAUHOKI88:

F.A.Q. (Pertanyaan yang Sering Diajukan)

Q: Apakah DANAUHOKI88 aman untuk dimainkan?

A: Ya, DANAUHOKI88 menggunakan teknologi enkripsi SSL terbaru untuk melindungi data dan transaksi pemain, sehingga sangat aman untuk dimainkan.

Q: Bagaimana cara mendapatkan bonus sambutan di DANAUHOKI88?

A: Anda hanya perlu mendaftar sebagai pengguna baru, dan bonus sambutan akan otomatis diberikan setelah akun Anda aktif.

Q: Apakah layanan pelanggan DANAUHOKI88 tersedia 24/7?

A: Ya, tim dukungan pelanggan DANAUHOKI88 tersedia sepanjang waktu melalui live chat atau email untuk membantu Anda dengan pertanyaan atau masalah apa pun.

Siap untuk menikmati pengalaman bermain terbaik di DANAUHOKI88? Jangan ragu lagi! Daftar sekarang dan dapatkan berbagai bonus serta promosi eksklusif yang hanya tersedia di DANAUHOKI88. Klik di sini untuk mulai bermain dan rasakan keseruan di platform game online tepercaya ini!

Dengan pilihan permainan yang beragam, keamanan yang terjamin, dan bonus yang menarik, DANAUHOKI88 adalah platform game online yang sempurna bagi para pemain di Indonesia. Bergabunglah sekarang dan nikmati pengalaman bermain yang seru serta berbagai keuntungan yang ditawarkan oleh DANAUHOKI88!

How can I customize my meme?

The Fastest Meme Generator on the Planet. Easily add text to images or memes.

No Spacing Top & Bottom Top Bottom

Auto Color White Black Custom

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

← Background color. Click to change.

Note: font can be customized per-textbox by clicking the gear icon.

Tip: If you log in, your memes will be saved in your account

Generate Reset Save Text Box Settings

Availability and playing strength

Chess machines/programs are available in several different forms: stand-alone chess machines (usually a microprocessor running a software chess program, but sometimes as a specialized hardware machine), software programs running on standard PCs, web sites, and apps for mobile devices. Programs run on everything from super-computers to smartphones. Hardware requirements for programs are minimal; the apps are no larger than a few megabytes on disk, use a few megabytes of memory (but can use much more, if it is available), and any processor 300 Mhz or faster is sufficient. Performance will vary modestly with processor speed, but sufficient memory to hold a large transposition table (up to several gigabytes or more) is more important to playing strength than processor speed.

Most available commercial chess programs and machines can play at super-grandmaster strength (Elo 2700 or more), and take advantage of multi-core and hyperthreaded computer CPU architectures. Top programs such as Stockfish have surpassed even world champion caliber players. Most chess programs comprise a chess engine connected to a GUI, such as Winboard or Chessbase. Playing strength, time controls, and other performance-related settings are adjustable from the GUI. Most GUIs also allow the player to set up and to edit positions, to reverse moves, to offer and to accept draws (and resign), to request and to receive move recommendations, and to show the engine's analysis as the game progresses.

There are thousands of chess engines such as Sargon, IPPOLIT, Stockfish, Crafty, Fruit, Leela Chess Zero and GNU Chess which can be downloaded (or source code otherwise obtained) from the Internet free of charge.